

COURSE TITLE = TEXTRONICS COURSE CODE = TT-603

by, **PANKAJ JYOTI DAS** (M.TECH),(ECE)

TEXTRONICS

5

TEXTRONICS

➤The term 'Textronics' refers to interdisciplinary approaches in the processes of producing and designing textile materials.

It is a synergic connection of Textile
industry, Electronics and Computer
science with elements of automatics
and metrology knowledge.

Metrology: the Scientific study of measurement.

Microcontroller

>PLC(Programmable Logic Controller)

:Digital Electronics:

Analog vs Digital :

 \blacktriangleright <u>Analog signal</u>: An analog signal signifies a continuous signal that keeps changes with a time period.

Digital signal : A digital signal signifies a discrete signal that carries binary data and has discrete values.

Digital signal is square waves but Analog signals range will not be set.

:Analog Electronics vs Digital Electronics:

Analog Electronics

- Analog Electronics deals with Analog Signal which is a continuous signal i.e. it varies continuously with time. Most of the signals are analog in nature.
- ➢ It has usually larger circuits and occupies more area.
- Analog measuring instruments are less accurate and chances of misreading are more.
- ➤ The instruments are delicate and harms are more in case of drops and falls.

Digital Electronics

Digital Electronics deals with digital signal which is discrete signal i.e. it carries binary data and has discrete values.

- ➢ It has smaller integrated circuits and occupies lesser area.
- Digital measuring instruments are more accurate and there is no case of misreading.
- The instruments are more strong and there are lesser harms on drops and falls.

:Decimal and Binary Number System:

- □ Zero (0) and One(1) are known as binary numbers.
- □ <u>Binary Number System</u>: It is a Base-2 numbering system that represents each numeric values using two unique digits Zero (0) and One (1).

i.e. $(5)_{10} = (0101)_2$

□ <u>LSB and MSB:</u>

Right-hand most bit of a binary number is known as *Least Significant Bit(LSB)* and the left-hand most bit of a binary number is known as *Most Significant Bit(MSB)*.

Decimal	Binary	
0	0000	Number
1	0001	Binary Di
2	0010	1
3	0011	4
4	0100	8
5	0101	
6	0110	10
7	0111	32
8	1000	64
9	1001	6

Number of Binary Digits	Common Name		
1	Bit		
4	Nibble		
8	Byte		
16	Word		
32	Double Word Quad Word		
64			

MSB	Binary Digit							LSB
28	27	26	2 ⁵	24	23	22	21	20
256	128	64	32	16	8	4	2	1

:Conversion of Binary and Decimal:

A

Decimal to Binary Conversion

- *Step I*: Write down the **decimal** number and to continually divide-by-2 (two) to give a result and a remainder of either a "1" or a "0" until the final result equals zero.
- *Step II*: Write all reminders from downwards(MSB) to upwards(LSB).

Binary to Decimal Conversion

- *Step I:* Multiply each digits of binary numbers(Right to left) with their corresponding weights or power of 2.
- *Step II*: Add all the values evaluated in step I.

MSB	4SB Binary Digit							
28	27	26	25	24	23	22	21	20
256	128	64	32	16	8	4	2	1

Q) Convert following Binary numbers to Decimal.

- i) (111001)₂
- ii) (100011)₂
- iii) (11111)₂
- iv) (1100)₂
- v) $(1000000)_2$

Ans:

- i. (57)₁₀
- ii. (35)₁₀
- iii. (31)₁₀
- iv. (12)₁₀
- v. $(128)_{10}$

Q) Convert following Decimal numbers to Binary.

- i) (23)₁₀
- ii) (29)₁₀
- iii) (256)₁₀
- iv) (15)₁₀
- v) $(21)_{10}$

Ans:

- i. (10111)₂
- ii. (11101)₂
- iii. (10000000)₂
- iv. (1111)₂
- v. (10101)₂