

Assam Textile Institute

Empowering Textile Education

Class 5

COURSE TITLE = TEXTRONICS COURSE CODE= TT-603

by, **PANKAJ JYOTI DAS**(M.TECH),(ECE)

: Latch, Flip Flop and It's Types :

- A flip flop is an electronic circuit with two stable states that can be used to store binary data. The stored data can be changed by applying varying inputs.
- ➤ Flip-flops and Latches are fundamental building blocks of digital electronics systems used in computers, communications and many other types of systems.
- ➤ Flip-flops and latches are used as data storage elements. It is the basic storage element in *sequential* logic.
- ➤ Both **Latches and flip flops** are circuit elements where the output not only depends on the current inputs, but also depends on the previous input and outputs.
- ➤ The main *difference* between the latch and flip flop is that a flip flop has a *clock signal*, whereas a latch does not have clock signals.

:Types of Flip Flop and Truth Tables:

- Flip-flops can be divided into common types: the SR ("set-reset"), D ("data" or "delay"), T ("toggle"), and JK.
- ➤ The behavior of a particular type can be described by what is termed the characteristic equation, which derives the "next" (i.e., after the next clock pulse) output, Q_{next} in terms of the input signal(s) and/or the current output.

:Types of Flip Flop and Truth Tables:

S	R	Q _{next}	Action
0	0	Q	Hold state
0	1	0	Reset
1	0	1	Set
1	1	Х	Not allowed

S	R	Q	Q(Next)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

D	Q(Next)	
0	0	
1	1	

D	Q	Q(Next)
0	0	0
0	1	0
1	0	1
1	1	1

T	Q(Next)	
0	Q	
1	Q	

T	Q	Q(Next)
0	0	0
0	1	1
1	0	1
1	1	0

J	K	Q _{next}	Comment
0	0	Q	No change
0	1	0	Reset
1	0	1	Set
1	1	Q	Toggle

J	K	Q	Q(Next)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

LOGIC GATES PROBLEM

Q) Find out the value of Y=?

LOGIC GATES PROBLEM

Construction of NOT gate by using NOR and NAND gate

